
    9iO              $       6   S r SSKJrJrJr  SSKrSSKJr  SSKJrJ	r	J
r
JrJrJrJrJrJrJrJrJrJrJr  SS/r " S	 S\5      rS
S\ S\ S\ S\ S\
 S3-   \l         S\\   S\\   S\\   S\\   S\\   S\\   S\S\S\S\S\S\S\S\S\S\4 S jrS\\   S\\   S\\   S\\   S\\   S\\   S\S\S\S\S\S\S\S\S\S\4 S  jr\" \S!9     S$S\\   S\\   S\\   S\\   S\\   S\\   S"\\   S\S\S\S\S\S\S\S\S\S\4"S# jj5       rg)%z)Implementation for the RMSprop algorithm.    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype_maximize_doc_params_doc
_to_scalar_use_grad_for_differentiable_view_as_real	OptimizerParamsTRMSproprmspropc                      ^  \ rS rSr          SS\S\\\4   S\S\S\S\S\S	\S
\	\   S\S\4U 4S jjjr
U 4S jrS r\SS j5       rSrU =r$ )r      paramslralphaepsweight_decaymomentumcentered
capturableforeachmaximizedifferentiablec                 n  > [        U[        5      (       a  UR                  5       S:w  a  [        S5      eSU::  d  [        SU 35      eSU::  d  [        SU 35      eSU::  d  [        SU 35      eSU::  d  [        SU 35      eSU::  d  [        SU 35      eUUUUUUUU	U
US	.
n[        TU ]  X5        g )
Nr   zTensor lr must be 1-elementg        zInvalid learning rate: zInvalid epsilon value: zInvalid momentum value: zInvalid weight_decay value: zInvalid alpha value: )
r   r   r   r   r    r   r!   r"   r#   r$   )
isinstancer   numel
ValueErrorsuper__init__)selfr   r   r   r   r   r   r    r!   r"   r#   r$   defaults	__class__s                S/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/torch/optim/rmsprop.pyr*   RMSprop.__init__   s     b&!!bhhjAo:;;by6rd;<<cz6se<==h7zBCCl";L>JKKe|4UG<==   ($ ,
 	*    c                   > [         TU ]  U5        U R                   GH)  nUR                  SS5        UR                  SS5        UR                  SS 5        UR                  SS5        UR                  SS5        UR                  SS5        US	    H  nU R                  R                  U/ 5      n[        U5      S:w  d  M0  [        R                  " US
   5      (       a  MP  [        US
   5      nUS   (       a(  [        R                  " U[        5       UR                  S9O[        R                  " U[        5       S9US
'   M     GM,     g )Nr   r   r    Fr"   r#   r$   r!   r   stepdtypedevicer4   )r)   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r5   )r+   r:   grouppp_statestep_valr-   s         r.   r7   RMSprop.__setstate__H   s   U#&&EZ+Z/Y-Z/-u5\518_**..B/w<1$U__WV_-M-M$WV_5H
 !. $,=,? #\\(:K:MN FO	 % 'r0   c                    SnUS    GH  n	U	R                   c  M  U[        R                  " U	5      -  nUR                  U	5        U	R                   R                  (       a  [        S5      eUR                  U	R                   5        U R                  U	   n
[        U
5      S:X  a  US   (       a(  [        R                  " S[        5       U	R                  S9O[        R                  " S[        5       S9U
S	'   [        R                  " U	[        R                  S
9U
S'   US   S:  a&  [        R                  " U	[        R                  S
9U
S'   US   (       a&  [        R                  " U	[        R                  S
9U
S'   UR                  U
S   5        UR                  U
S	   5        US   S:  a  UR                  U
S   5        US   (       d  GM  UR                  U
S   5        GM     U$ )NFr   z)RMSprop does not support sparse gradientsr   r!    r3   r6   r2   )memory_format
square_avgr   momentum_bufferr    grad_avg)gradr=   
is_complexappend	is_sparseRuntimeErrorr:   r<   zerosr   r5   
zeros_likepreserve_format)r+   rA   params_with_gradgradssquare_avgsmomentum_buffer_list	grad_avgsstate_stepshas_complexrB   r:   s              r.   _init_groupRMSprop._init_group]   s    xAvv~5++A..K##A&vv"#NOOLL JJqME 5zQ \* KK*;*=ahhOR/@/BC f
 ',&6&6U%:%:'l# $q(/4/?/?)>)>0E+, $(-(8(8)>)>)E*% u\23uV}-Z 1$$++E2C,DEZ    z!23I !L r0   c                 v   U R                  5         SnUb%  [        R                  " 5          U" 5       nSSS5        U R                   H]  n/ n/ n/ n/ n/ n/ n	U R	                  UUUUUUU	5      n
[        UUUUUU	US   US   US   US   US   US   US   US	   US
   US   U
S9  M_     U$ ! , (       d  f       N}= f)zPerform a single optimization step.

Args:
    closure (Callable, optional): A closure that reevaluates the model
        and returns the loss.
Nr   r   r   r   r   r    r"   r#   r$   r!   )r   r   r   r   r   r    r"   r#   r$   r!   rZ   ) _cuda_graph_capture_health_checkr=   enable_gradr8   r[   r   )r+   closurelossrA   rT   rU   rV   rX   rW   rY   rZ   s              r.   r2   RMSprop.step   s	    	--/""$y % &&E-/"$E(*K&(I13 (*K** $K  $;Gn%L">2z*z*i(z*$%56 .'#% 'L S %$s   B**
B8rG   )
g{Gz?gGz?g:0yE>r   r   FFNFFN)__name__
__module____qualname____firstlineno__r   r   r?   r   boolr   r*   r7   r[   r   r2   __static_attributes____classcell__)r-   s   @r.   r   r      s     $( "&$'+'+ %- '+ 	'+
 '+ '+ '+ '+ '+ $'+ '+ '+ '+R*1f "4 "4r0   aj  Implements RMSprop algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \alpha \text{ (alpha)}, \: \gamma \text{ (lr)},
                \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}                   \\
            &\hspace{13mm}   \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},
                \: centered, \: \epsilon \text{ (epsilon)}                                       \\
            &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \:
                \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}v_t           \leftarrow   \alpha v_{t-1} + (1 - \alpha) g^2_t
                \hspace{8mm}                                                                     \\
            &\hspace{5mm} \tilde{v_t} \leftarrow v_t                                             \\
            &\hspace{5mm}if \: centered                                                          \\
            &\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t            \\
            &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} -  \big(g^{ave}_{t} \big)^2        \\
            &\hspace{5mm}if \: \mu > 0                                                           \\
            &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} +
                g_t/ \big(\sqrt{\tilde{v_t}} +  \epsilon \big)                                   \\
            &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t                \\
            &\hspace{5mm} else                                                                   \\
            &\hspace{10mm}\theta_t      \leftarrow   \theta_{t-1} -
                \gamma  g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big)  \hspace{3mm}              \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to
    `lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton.
    and centered version `Generating Sequences
    With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
    The implementation here takes the square root of the gradient average before
    adding epsilon (note that TensorFlow interchanges these two operations). The effective
    learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma`
    is the scheduled learning rate and :math:`v` is the weighted moving average
    of the squared gradient.
    z
    Args:
        a0  
        lr (float, Tensor, optional): learning rate (default: 1e-2)
        alpha (float, optional): smoothing constant (default: 0.99)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        momentum (float, optional): momentum factor (default: 0)
        centered (bool, optional) : if ``True``, compute the centered RMSProp,
            the gradient is normalized by an estimation of its variance
        z	
        z

    r   rU   rV   rX   rW   rY   r   r   r   r   r   r    r#   r$   r!   rZ   c       
            [         R                  R                  5       (       d  [        U5      n[	        U 5       GHM  u  nnUU   n[         R
                  R                  5       (       dd  U(       a]  [        5       nUR                  R                  UR                  R                  :X  a  UR                  R                  U;   d   SU S35       eUU   nU(       d  UOU* nUU   nUS-  nU	S:w  a  UR                  UU	S9n[         R                  " U5      nU(       aB  [         R                  " U5      n[         R                  " U5      n[         R                  " U5      nUR                  U5      R                  UUSU-
  S9  U(       aW  UU   nU(       a  [         R                  " U5      nUR                  USU-
  5        UR!                  UUSS9R#                  5       nOUR%                  5       nU(       a  UR                  U5      nOUR'                  U5      nU
S:  aW  UU   nU(       a  [         R                  " U5      nUR                  U
5      R)                  UU5        UR'                  UU* S9  GM;  UR)                  UUU* S9  GMP     g )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   r   value)r=   jitis_scriptingr   	enumeratecompileris_compilingr   r5   typeaddrM   view_as_realmul_addcmul_lerp_addcmulsqrt_sqrtadd_addcdiv_)r   rU   rV   rX   rW   rY   r   r   r   r   r   r    r#   r$   r!   rZ   iparamr2   capturable_supported_devicesrL   rI   is_complex_paramrK   avgbufs                             r.   _single_tensor_rmspropr   	  s3   & 99!!##^f%51~ ~~**,,+L+N(!!T[[%5%55LL%%)EE \\x[yyz{	F Qx#t$ ^
	188E86D ++E2&&u-E%%d+D++J7J''d!e)'D |H --h7NN4U+$$Xxr$BHHJC//#C''#,C((3-Ca<&q)C((-HHX''c2JJs2#J&NN4RCN0g &r0   c       
   	        ^! [        U 5      S:X  a  g U(       a   S5       e[        R                  R                  5       (       d?  U(       a8  [	        5       m![        U!4S j[        X5       5       5      (       d   ST! S35       e[        U5      n[        R                  " XX#XE/5      nUR                  5        GH  u  u  nnnnnnn[        [        [           U5      n[        [        [           U5      n[        [        [           U5      n[        [        [           U5      nU(       am  UU/nU
S:  a(  [        [        [           U5      nUR                  U5        U(       a(  [        [        [           U5      nUR                  U5        [        U/UQ76   U(       a  [        R                   " U5      n[        R                  R                  5       (       d>  US   R"                  (       a*  [        R$                  " U[        R&                  " SSS9SS	9  O[        R$                  " US
5        U	S:w  a4  U(       a  [        R$                  " UUU	S	9  O[        R(                  " UUU	S	9n[        R*                  " UU5        [        R,                  " UUUS
U-
  S9  U(       aw  [        [        [           U5      n[        R.                  " UUS
U-
  5        [        R0                  " UUUSS9n[        R2                  " U5        [        R$                  " UU5        O-[        R4                  " U5      n[        R$                  " UU5        U
S:  a  [        [        [           U5      n[        R*                  " UU
5        [        R6                  " UUU5        U(       aQ  [9        U[        R                  5      (       a2  [        R:                  " UU* 5      n [        R$                  " UU 5        GM-  [        R$                  " UUU* S	9  GMG  U(       aR  [9        U[        R                  5      (       a3  [        R<                  " UU* 5        [        R6                  " UUU5        GM  [        R6                  " UUUU* S9  GM     g )Nr   z#_foreach ops don't support autogradc              3      >#    U  HT  u  pUR                   R                  UR                   R                  :H  =(       a    UR                   R                  T;   v   MV     g 7frc   )r5   rw   ).0rB   r2   r   s      r.   	<genexpr>(_multi_tensor_rmsprop.<locals>.<genexpr>p  sN      
 4 HHMMT[[--- >!==>3s   AArl   rm   g      ?cpu)r5   rn   r   ro   rq   )r<   r=   ru   rv   r   allzipr   r   "_group_tensors_by_device_and_dtypevaluesr   listr   rN   r   _foreach_negis_cpu_foreach_add_r@   _foreach_add_foreach_mul__foreach_addcmul__foreach_lerp__foreach_addcmul_foreach_sqrt__foreach_sqrt_foreach_addcdiv_r&   _foreach_mul_foreach_div_)"r   rU   rV   rX   rW   rY   r   r   r   r   r   r    r#   r$   r!   rZ   grouped_tensorsgrouped_params_grouped_grads_grouped_square_avgs_grouped_grad_avgs_grouped_momentum_buffer_list_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_square_avgsgrouped_state_stepsstate_and_gradsgrouped_momentum_buffer_listgrouped_grad_avgsr   momentum_lrr   s"                                    @r.   _multi_tensor_rmspropr   U  s   & 6{aDDD >>&&((Z'H'J$ 
 v3
 
 
 	

 XXtWuuvw	
 
 
BBBB	0DRO ""$				
 ) d6lO<T&\>:"4<1EF"4<1EF,.ABO!|/3L"?0,  &&'CD$(f7I$J!&&'89.;?;!..}=M ~~**,,1DQ1G1N1N#U\\#e%DC  3Q71##M>V % 2 2!>! 	/7QY	
  $T&\3E F  !2M1u9M((#%68IQSC   %S)%%&9:CS)a<+/V;,(  <hG##$@-QTU jU\\::#001MPRsS##NK@##"$@ jU\\::##C"-''sK''sSURUVa %r0   )single_tensor_fnr"   c                   [         R                  R                  5       (       d"  [        S U 5       5      (       d  [	        S5      eUc  [        XSS9u  nnU(       a.  [         R                  R                  5       (       a  [	        S5      eU(       a*  [         R                  R                  5       (       d  [        nO[        nU" U UUUUUUUUUUUUU	UU
S9  g)zlFunctional API that performs rmsprop algorithm computation.

See :class:`~torch.optim.RMSProp` for details.
c              3   V   #    U  H  n[        U[        R                  5      v   M!     g 7frc   )r&   r=   r   )r   ts     r.   r   rmsprop.<locals>.<genexpr>  s!      5-8
1ell##[s   ')zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)
r   r   r   r   r   r    r#   r!   r$   rZ   )
r=   ru   rv   r   rP   r	   rr   rs   r   r   )r   rU   rV   rX   rW   rY   r"   r#   r$   r!   rZ   r   r   r   r   r   r    r   funcs                      r.   r   r     s    : >>&&(( 5-85 2 2 ^
 	
 1e

7 599))++STTuyy--//$%!%!r0   )NFFFF)__doc__typingr   r   r   r=   r   	optimizerr   r	   r
   r   r   r   r   r   r   r   r   r   r   r   __all__r   r   r?   rh   r   r   r   rG   r0   r.   <module>r      s?   0 ( (     $ i
 gi gV+X		 		 
 		 		 		 Y< BI1LI1<I1 fI1 F|	I1
 v,I1 fI1 	I1 I1 
I1 I1 I1 I1 I1 I1  !I1" #I1XAWLAW<AW fAW F|	AW
 v,AW fAW 	AW AW 
AW AW AW AW AW AW  !AW" #AWH  1GH # ALA<A fA F|	A
 v,A fA d^A A A A A 	A  !A" 
#A$ %A& 'A( )A IAr0   