
    9i{                     v   S SK JrJr  / SQr/ SQr\" SSS/5        \" SS5        \" S	S
/\Q5        \" SS/5        \" SSS/5        \" SS5        \" SSS/5        \" SS5        \" S\5        \" SS5        \" S\5        \" SSS/5        \" SSS/5        \" S S!/5        \" S"S#S$/5        \" S%S&S'/5        \" S(S)5        \" S*S
S+S,/\QS-PS.PS/PS0P5        \" S1S2S3S49  \" S5S6S3S79  \" S8S9S3S79  \" S:S;5        \" S<S=5        \" S>S?5        \" S@SA5        \" SBSC5        \" SDSE5        \" SFSG5        \" SHSIS3S49  \" SJSK5        \" SLSMS3S49  \" SNSO5        \" SPSQ5        \" SRSSS3S79  \" STSUS3S79  \" SVSWS3S49  \" SXSYS3S79  \" SZS[5        \" S\S]S3S49  \" S^S_S3S3S`9  \" SaSbS3S49  \" ScSd5        \" SeSfS3S3Sg9  \" ShSiS3S3Sg9  \" SjSkS3S79  \" SlS6S3S79  \" SmS6S3S79  \" SnS6S3S79  \" SoSpS3S79  \" SqSrS3S79  \" SsSrS3S79  \" StSuS3S79  \" SvSwS3S79  \" SxSyS3S79  \" SzS{S3S79  \" S|S}S3S79  \" S~SS3S79  \" SSS3S79  \" SSS3S79  \" SSS3S79  \" SSS6S9  g)   )register_artifactregister_log)z%torch.fx.experimental.symbolic_shapesztorch.fx.experimental.sym_nodeztorch.fx.experimental.recording)ztorch.distributed"torch._dynamo.backends.distributedtorch.nn.parallel.distributedasync_compileztorch._inductor.async_compilez3torch._inductor.compile_worker.tracked_process_poolcache)ztorch._inductor.remote_cacheztorch._inductor.fb.remote_cachedynamoztorch._dynamofake_tensorztorch._subclasses.fake_tensoraotztorch._functorch.aot_autogradztorch._functorch._aot_autogradautogradztorch.autogradinductorztorch._inductorztorch._inductor.cudagraph_trees
cudagraphszGLogs information from wrapping inductor generated code with cudagraphs.dynamictorchdistributedc10dz"torch.distributed.distributed_c10dztorch.distributed.rendezvousddpr   r   ppztorch.distributed.pipeliningfsdpztorch.distributed.fsdpz"torch.distributed._composable.fsdpdtensorztorch.distributed._tensorztorch.distributed.tensoronnxz
torch.onnxexportztorch.exportztorch.export.dynamic_shapesztorch._export.converterztorch._export.non_strict_utilsztorch._export.serde.serializez"torch.fx.experimental.proxy_tensorguardszhThis prints the guards for every compiled Dynamo frame. It does not tell you where the guards come from.T)visibleverbose_guards )off_by_defaultbytecodez{Prints the original and modified bytecode from Dynamo. Mostly useful if you're debugging our bytecode generation in Dynamo.graphzvPrints the dynamo traced graph (prior to AOTDispatch) in a table. If you prefer python code use `graph_code` instead. 
graph_codez4Like `graph`, but gives you the Python code instead.graph_code_verbosezLVerbose FX pass logs, e.g. from tensorify_python_scalars and runtime_assert.graph_sizesz5Prints the sizes of all FX nodes in the dynamo graph.trace_sourcezAs we execute bytecode, prints the file name / line number we are processing and the actual source code. Useful with `bytecode`
trace_callzhLike trace_source, but it will give you the per-expression blow-by-blow if your Python is recent enough.trace_bytecodezCAs we trace bytecode, prints the instruction and the current stack.
aot_graphszPrints the FX forward and backward graph generated by AOTDispatch, after partitioning. Useful to understand what's being given to Inductoraot_joint_graphz_Print FX joint graph from AOTAutograd, prior to partitioning. Useful for debugging partitioningaot_graphs_effectszkPrints the FX forward and backward graph generated by AOTDispatch, useful for debugging effects processing.pre_grad_graphsz{Prints the FX graph before inductor pre grad passes. Useful to understand what's being given to Inductor before grad passespost_grad_graphsz}Prints the FX graph generated by post grad passes. Useful to understand what's being given to Inductor after post grad passesir_pre_fusionz,Prints the IR before inductor fusion passes.ir_post_fusionz+Prints the IR after inductor fusion passes.compiled_autogradzzPrints various logs in compiled_autograd, including but not limited to the graphs. Useful for debugging compiled_autograd.compiled_autograd_verbosezjWill affect performance. Prints compiled_autograd logs with C++ info e.g. autograd node -> fx node mapping
ddp_graphszOnly relevant for compiling DDP. DDP splits into multiple graphs to trigger comms early. This will print each individual graph here.
recompilesz?Prints the reason why we recompiled a graph. Very, very useful.recompiles_verbosezPrints all guard checks that fail during a recompilation. At runtime, Dynamo will stop at the first failed check for each failing guard. So not all logged failing checks are actually ran by Dynamo.)r   r   graph_breakszPrints whenever Dynamo decides that it needs to graph break (i.e. create a new graph). Useful for debugging why torch.compile has poor performancenot_implementedzPrints log messages whenever we return NotImplemented in a multi-dispatch, letting you trace through each object we attempted to dispatch tooutput_codez>Prints the code that Inductor generates (either Triton or C++))r   r   kernel_codez?Prints the code that Inductor generates (on a per-kernel basis)schedulezIInductor scheduler information. Useful if working on Inductor fusion algo
perf_hintsonnx_diagnosticscompute_dependenciesfusionzADetailed Inductor fusion decisions. More detailed than 'schedule'loop_orderingzLogs related to loop orderingloop_tilingoverlapz0Detailed Inductor compute/comm overlap decisionssym_nodez.Logs extra info for various SymNode operationstrace_shape_eventszBLogs traces for every ShapeEnv operation that we record for replaycudagraph_static_inputsz:Logs static inputs handling in dynamo, AOT, and cudagraphsbenchmarkingz+Detailed Inductor benchmarking information.
autotuningzKAutotuning choice logs, such as kernel source, perf, and tuning parameters.graph_region_expansionzMLogs detailed steps of the duplicate graph region tracker expansion algorithminductor_metricszGLogs Inductor metrics, such as num_bytes, nodes_num_elem, node_runtimeshierarchical_compilez,Logs debug info for hierarchical compilationcustom_format_test_artifactzTesting only)
log_formatN)	_internalr   r   DYNAMICDISTRIBUTED     ]/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/torch/_logging/_registrations.py<module>rN      s   6
 '= P X2'2 3 ]<= > U46VW X Z) * Z+-NO P M
 Y   Wg  ]K ( 
13QR 	+-QR T23 4 V.0TU V Y46PQ R V\ " %	 
		
 	"	 	)	 	(	 	-	 n
 "Bt <  B
 | , V W R J  F n I  Q
 e q
  B  D 2
 1
  A
 p
  K E
 C   Y
  S D	 E	 O
 ,4 8 $b > ("T B G
 #
 # 6
 4
 H
 @
 1
 Q
 S M
 2
 /B OrL   