
    9i                     0    S SK Jr  S SKrS/rSSSS.S jrg)    Ncontingency_tableFmatrix)ignore_labels	normalizesparse_typec                ~   Uc  / nUR                  S5      nU R                  S5      n[        R                  " XbSS9R                  [        5      nU(       a  U[        R
                  " U5      -  n[        R                  " XvU445      nUS:X  a  [        R                  " U5      nU$ US:w  a  SU 3n	[        U	5      eU$ )a}  
Return the contingency table for all regions in matched segmentations.

Parameters
----------
im_true : ndarray of int
    Ground-truth label image, same shape as im_test.
im_test : ndarray of int
    Test image.
ignore_labels : sequence of int, optional
    Labels to ignore. Any part of the true image labeled with any of these
    values will not be counted in the score.
normalize : bool
    Determines if the contingency table is normalized by pixel count.
sparse_type : {"matrix", "array"}, optional
    The return type of `cont`, either `scipy.sparse.csr_array` or
    `scipy.sparse.csr_matrix` (default).

Returns
-------
cont : scipy.sparse.csr_matrix or scipy.sparse.csr_array
    A contingency table. `cont[i, j]` will equal the number of voxels
    labeled `i` in `im_true` and `j` in `im_test`. Depending on `sparse_type`,
    this can be returned as a `scipy.sparse.csr_array`.
T)invertr   arrayz/`sparse_type` must be 'array' or 'matrix', got )
reshapenpisinastypefloatcount_nonzerosparse	csr_array
csr_matrix
ValueError)
im_trueim_testr   r   r   	im_test_r	im_true_rdatacontmsgs
             b/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/skimage/metrics/_contingency_table.pyr   r      s    : #I#I779D9@@GD  &&Ty#9:;Dh  &
 K	 
	?}MoK    )scipy.sparser   numpyr   __all__r    r   r   <module>r#      s!     
 (,u(,r   