
    9ix                     0    S SK Jr  SSKJr  SS jrSS jrg)    )ndimage   )label_cythonNc           	      ,   SSK Jn  US:X  a  U ) n Uc  U R                  nSUs=::  a  U R                  ::  d+  O  [        SU R                   SU R                   SU S35      eU" SX0R                  5      n[        R
                  " XS	9nU(       a  U$ US
   $ )zzFaster implementation of clabel for boolean input.

See context: https://github.com/scikit-image/scikit-image/issues/4833
   )_resolve_neighborhoodr   NzConnectivity for zD image should be in [1, ..., z]. Got .)	structurer   )morphology._utilr   ndim
ValueErrorr   label)image
background
return_numconnectivityr   	footprintresults          V/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/skimage/measure/_label.py_label_boolr      s    
 9Qzz*

*

| ,#jj\aA
 	

 &dL**EI]]56Fay    c                 Z    U R                   [        :X  a  [        U UUUS9$ [        XX#5      $ )ao	  Label connected regions of an integer array.

Two pixels are connected when they are neighbors and have the same value.
In 2D, they can be neighbors either in a 1- or 2-connected sense.
The value refers to the maximum number of orthogonal hops to consider a
pixel/voxel a neighbor::

  1-connectivity     2-connectivity     diagonal connection close-up

       [ ]           [ ]  [ ]  [ ]             [ ]
        |               \  |  /                 |  <- hop 2
  [ ]--[x]--[ ]      [ ]--[x]--[ ]        [x]--[ ]
        |               /  |  \             hop 1
       [ ]           [ ]  [ ]  [ ]

Parameters
----------
label_image : ndarray of dtype int
    Image to label.
background : int, optional
    Consider all pixels with this value as background pixels, and label
    them as 0. By default, 0-valued pixels are considered as background
    pixels.
return_num : bool, optional
    Whether to return the number of assigned labels.
connectivity : int, optional
    Maximum number of orthogonal hops to consider a pixel/voxel
    as a neighbor.
    Accepted values are ranging from  1 to input.ndim. If ``None``, a full
    connectivity of ``input.ndim`` is used.

Returns
-------
labels : ndarray of dtype int
    Labeled array, where all connected regions are assigned the
    same integer value.
num : int, optional
    Number of labels, which equals the maximum label index and is only
    returned if return_num is `True`.

See Also
--------
skimage.measure.regionprops
skimage.measure.regionprops_table

References
----------
.. [1] Christophe Fiorio and Jens Gustedt, "Two linear time Union-Find
       strategies for image processing", Theoretical Computer Science
       154 (1996), pp. 165-181.
.. [2] Kensheng Wu, Ekow Otoo and Arie Shoshani, "Optimizing connected
       component labeling algorithms", Paper LBNL-56864, 2005,
       Lawrence Berkeley National Laboratory (University of California),
       http://repositories.cdlib.org/lbnl/LBNL-56864

Examples
--------
>>> import numpy as np
>>> x = np.eye(3).astype(int)
>>> print(x)
[[1 0 0]
 [0 1 0]
 [0 0 1]]
>>> print(label(x, connectivity=1))
[[1 0 0]
 [0 2 0]
 [0 0 3]]
>>> print(label(x, connectivity=2))
[[1 0 0]
 [0 1 0]
 [0 0 1]]
>>> print(label(x, background=-1))
[[1 2 2]
 [2 1 2]
 [2 2 1]]
>>> x = np.array([[1, 0, 0],
...               [1, 1, 5],
...               [0, 0, 0]])
>>> print(label(x))
[[1 0 0]
 [1 1 2]
 [0 0 0]]
)r   r   r   )dtypeboolr   clabel)label_imager   r   r   s       r   r   r   !   s;    h D !!%	
 	
 kzHHr   )NFN)scipyr   _ccompr   r   r   r    r   r   <module>r       s     *8\Ir   