
    9iq%                     B    S SK rSSKJr  S SKJr  Sr S	SS.S jjrS rg)
    N   )_get_contour_segments)deque)highlowmaskc                   U[         ;  a  [        S5      eU[         ;  a  [        S5      eU R                  S   S:  d  U R                  S   S:  a  [        S5      eU R                  S:w  a  [        S5      eUbw  UR                  U R                  :w  a  [        S	5      e[        R
                  " UR                  [        S
S9(       d  [        S5      eUR                  [        R                  SS9nUc0  [        R                  " U 5      [        R                  " U 5      -   S-  n[        U R                  [        R                  5      [        U5      US:H  US9n[!        U5      nUS:X  a  U Vs/ s H
  owSSS2   PM     nnU$ s  snf )a  Find iso-valued contours in a 2D array for a given level value.

Uses the "marching squares" method to compute the iso-valued contours of
the input 2D array for a particular level value. Array values are linearly
interpolated to provide better precision for the output contours.

Parameters
----------
image : (M, N) ndarray of double
    Input image in which to find contours.
level : float, optional
    Value along which to find contours in the array. By default, the level
    is set to (max(image) + min(image)) / 2

    .. versionchanged:: 0.18
        This parameter is now optional.
fully_connected : str, {'low', 'high'}
     Indicates whether array elements below the given level value are to be
     considered fully-connected (and hence elements above the value will
     only be face connected), or vice-versa. (See notes below for details.)
positive_orientation : str, {'low', 'high'}
     Indicates whether the output contours will produce positively-oriented
     polygons around islands of low- or high-valued elements. If 'low' then
     contours will wind counter-clockwise around elements below the
     iso-value. Alternately, this means that low-valued elements are always
     on the left of the contour. (See below for details.)
mask : (M, N) ndarray of bool or None
    A boolean mask, True where we want to draw contours.
    Note that NaN values are always excluded from the considered region
    (``mask`` is set to ``False`` wherever ``array`` is ``NaN``).

Returns
-------
contours : list of (K, 2) ndarrays
    Each contour is a ndarray of ``(row, column)`` coordinates along the contour.

See Also
--------
skimage.measure.marching_cubes

Notes
-----
The marching squares algorithm is a special case of the marching cubes
algorithm [1]_.  A simple explanation is available here:

https://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

There is a single ambiguous case in the marching squares algorithm: when
a given ``2 x 2``-element square has two high-valued and two low-valued
elements, each pair diagonally adjacent. (Where high- and low-valued is
with respect to the contour value sought.) In this case, either the
high-valued elements can be 'connected together' via a thin isthmus that
separates the low-valued elements, or vice-versa. When elements are
connected together across a diagonal, they are considered 'fully
connected' (also known as 'face+vertex-connected' or '8-connected'). Only
high-valued or low-valued elements can be fully-connected, the other set
will be considered as 'face-connected' or '4-connected'. By default,
low-valued elements are considered fully-connected; this can be altered
with the 'fully_connected' parameter.

Output contours are not guaranteed to be closed: contours which intersect
the array edge or a masked-off region (either where mask is False or where
array is NaN) will be left open. All other contours will be closed. (The
closed-ness of a contours can be tested by checking whether the beginning
point is the same as the end point.)

Contours are oriented. By default, array values lower than the contour
value are to the left of the contour and values greater than the contour
value are to the right. This means that contours will wind
counter-clockwise (i.e. in 'positive orientation') around islands of
low-valued pixels. This behavior can be altered with the
'positive_orientation' parameter.

The order of the contours in the output list is determined by the position
of the smallest ``x,y`` (in lexicographical order) coordinate in the
contour.  This is a side effect of how the input array is traversed, but
can be relied upon.

.. warning::

   Array coordinates/values are assumed to refer to the *center* of the
   array element. Take a simple example input: ``[0, 1]``. The interpolated
   position of 0.5 in this array is midway between the 0-element (at
   ``x=0``) and the 1-element (at ``x=1``), and thus would fall at
   ``x=0.5``.

This means that to find reasonable contours, it is best to find contours
midway between the expected "light" and "dark" values. In particular,
given a binarized array, *do not* choose to find contours at the low or
high value of the array. This will often yield degenerate contours,
especially around structures that are a single array element wide. Instead,
choose a middle value, as above.

References
----------
.. [1] Lorensen, William and Harvey E. Cline. Marching Cubes: A High
       Resolution 3D Surface Construction Algorithm. Computer Graphics
       (SIGGRAPH 87 Proceedings) 21(4) July 1987, p. 163-170).
       :DOI:`10.1145/37401.37422`

Examples
--------
>>> a = np.zeros((3, 3))
>>> a[0, 0] = 1
>>> a
array([[1., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
>>> find_contours(a, 0.5)
[array([[0. , 0.5],
       [0.5, 0. ]])]
z<Parameters "fully_connected" must be either "high" or "low".zAParameters "positive_orientation" must be either "high" or "low".r      r   z!Input array must be at least 2x2.zOnly 2D arrays are supported.Nz3Parameters "array" and "mask" must have same shape.safe)castingz(Parameter "mask" must be a binary array.F)copyg       @r   r   )_param_options
ValueErrorshapendimnpcan_castdtypebool	TypeErrorastypeuint8nanminnanmaxr   float64float_assemble_contours)imagelevelfully_connectedpositive_orientationr	   segmentscontourscs           ^/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/skimage/measure/_find_contours.pyfind_contoursr(   
   s[   f n,M
 	
 >1R
 	
 {{1~U[[^a/<==zzQ899::$UVV{{4::tV<FGG{{288%{0}5!BIIe$44;$RZZ %,60IPTH "(+Hv%%-.XddGX.O /s   .Fc                 "   Sn0 n0 n0 nU  GH9  u  pVXV:X  a  M  UR                  US5      u  pxUR                  US5      u  pUb  U	b  XyL a  U	R                  U5        MR  X:  a5  U	R                  U5        UR                  US 5        X4X9S   '   X4XIS   '   M  UR                  [	        U	5      5        UR                  U	S   S 5        UR                  U
S 5        Xx4X7S   '   Xx4XGS   '   M  Uc%  U	c"  [        XV45      nXU'   X4X5'   X4XF'   US-  nGM  U	c  UR                  U5        Xx4X5'   GM#  U	R                  U5        X4XF'   GM<     [        UR                  5       5       VVs/ s H  u  p[        R                  " U5      PM     snn$ s  snnf )Nr   )NNr   r   )popappendextend
extendleftreversedr   
appendleftsorteditemsr   array)r$   current_indexr%   startsends
from_pointto_pointtailtail_numheadhead_numnew_contour_contours                 r'   r   r      s   MHFD (
 !Hl;*l; 0|H%
 &KK%LL40'+&6F7O&*%5DbN OOHTN3JJtAw-LL40'+&6F7O&*%5DbN\dl 67K&1]#"-!=F)9DNQM\ OOJ'"&!1F KK!"-DNq !)t 17x~~7G0HI0H*!BHHW0HIIIs   %"F)Nr   r   )	numpyr   _find_contours_cyr   collectionsr   r   r(   r        r'   <module>rD      s0     4   DINRVNb?JrC   