
    9iy2                         S SK Jr  S SKJr  S SKrSSKJr  SSKJr  SSK	J
r
  SS	KJr  SS
KJr  SrS rSS jr SS jr     SS jrg)    )chain)addN   )haar_like_feature_coord_wrapperhaar_like_feature_wrapper   )gray2rgb)	rectangle)img_as_float)ztype-2-xztype-2-yztype-3-xztype-3-yztype-4c                     U c  [         nU$ [        U [        5      (       a  U /nOU nU H#  nU[         ;  d  M  [        SU S[          S35      e   U$ )z?Transform feature type to an iterable and check that it exists.z'The given feature type is unknown. Got z instead of one of .)FEATURE_TYPE
isinstancestr
ValueError)feature_typefeature_type_feat_ts      T/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/skimage/feature/haar.py_validate_feature_typer      sp    $  lC(()NM(M#F\) =fX F&q*  $     c           
          [        U5      n[        U Vs/ s H  n[        XU5      PM     sn6 u  pV[        R                  " U5      [        R
                  " U5      4$ s  snf )a  Compute the coordinates of Haar-like features.

Parameters
----------
width : int
    Width of the detection window.
height : int
    Height of the detection window.
feature_type : str or list of str or None, optional
    The type of feature to consider:

    - 'type-2-x': 2 rectangles varying along the x axis;
    - 'type-2-y': 2 rectangles varying along the y axis;
    - 'type-3-x': 3 rectangles varying along the x axis;
    - 'type-3-y': 3 rectangles varying along the y axis;
    - 'type-4': 4 rectangles varying along x and y axis.

    By default all features are extracted.

Returns
-------
feature_coord : (n_features, n_rectangles, 2, 2), ndarray of list of tuple coord
    Coordinates of the rectangles for each feature.
feature_type : (n_features,), ndarray of str
    The corresponding type for each feature.

Examples
--------
>>> import numpy as np
>>> from skimage.transform import integral_image
>>> from skimage.feature import haar_like_feature_coord
>>> feat_coord, feat_type = haar_like_feature_coord(2, 2, 'type-4')
>>> feat_coord # doctest: +SKIP
array([ list([[(0, 0), (0, 0)], [(0, 1), (0, 1)],
              [(1, 1), (1, 1)], [(1, 0), (1, 0)]])], dtype=object)
>>> feat_type
array(['type-4'], dtype=object)

)r   zipr   npconcatenatehstack)widthheightr   r   r   
feat_coord	feat_types          r   haar_like_feature_coordr"   !   sd    R +<8M (

' ,E6B'

J >>*%ryy';;;

s   Ac                   ^ ^^^^^ TcM  [        U5      n[        R                  " [        [        R
                  " UUUU UU4S jU 5       5      5      5      $ TR                  S   UR                  S   :w  a  [        S5      e[         Vs/ s H  oU:H  PM	     n	n[        [        U	[        5       V
Vs/ s HL  u  p[        R                  " U
5      (       d  M"  [        R                  " U
5      [        T TTTTUTU
   5      4PMN     snn
6 u  p[        R                  " U5      n[        R                  " U5      nUR                  5       X'   U$ s  snf s  snn
f )a  Compute the Haar-like features for a region of interest (ROI) of an
integral image.

Haar-like features have been successfully used for image classification and
object detection [1]_. It has been used for real-time face detection
algorithm proposed in [2]_.

Parameters
----------
int_image : (M, N) ndarray
    Integral image for which the features need to be computed.
r : int
    Row-coordinate of top left corner of the detection window.
c : int
    Column-coordinate of top left corner of the detection window.
width : int
    Width of the detection window.
height : int
    Height of the detection window.
feature_type : str or list of str or None, optional
    The type of feature to consider:

    - 'type-2-x': 2 rectangles varying along the x axis;
    - 'type-2-y': 2 rectangles varying along the y axis;
    - 'type-3-x': 3 rectangles varying along the x axis;
    - 'type-3-y': 3 rectangles varying along the y axis;
    - 'type-4': 4 rectangles varying along x and y axis.

    By default all features are extracted.

    If using with `feature_coord`, it should correspond to the feature
    type of each associated coordinate feature.
feature_coord : ndarray of list of tuples or None, optional
    The array of coordinates to be extracted. This is useful when you want
    to recompute only a subset of features. In this case `feature_type`
    needs to be an array containing the type of each feature, as returned
    by :func:`haar_like_feature_coord`. By default, all coordinates are
    computed.

Returns
-------
haar_features : (n_features,) ndarray of int or float
    Resulting Haar-like features. Each value is equal to the subtraction of
    sums of the positive and negative rectangles. The data type depends of
    the data type of `int_image`: `int` when the data type of `int_image`
    is `uint` or `int` and `float` when the data type of `int_image` is
    `float`.

Notes
-----
When extracting those features in parallel, be aware that the choice of the
backend (i.e. multiprocessing vs threading) will have an impact on the
performance. The rule of thumb is as follows: use multiprocessing when
extracting features for all possible ROI in an image; use threading when
extracting the feature at specific location for a limited number of ROIs.
Refer to the example
:ref:`sphx_glr_auto_examples_applications_plot_haar_extraction_selection_classification.py`
for more insights.

Examples
--------
>>> import numpy as np
>>> from skimage.transform import integral_image
>>> from skimage.feature import haar_like_feature
>>> img = np.ones((5, 5), dtype=np.uint8)
>>> img_ii = integral_image(img)
>>> feature = haar_like_feature(img_ii, 0, 0, 5, 5, 'type-3-x')
>>> feature
array([-1, -2, -3, -4, -5, -1, -2, -3, -4, -5, -1, -2, -3, -4, -5, -1, -2,
       -3, -4, -1, -2, -3, -4, -1, -2, -3, -4, -1, -2, -3, -1, -2, -3, -1,
       -2, -3, -1, -2, -1, -2, -1, -2, -1, -1, -1])

You can compute the feature for some pre-computed coordinates.

>>> from skimage.feature import haar_like_feature_coord
>>> feature_coord, feature_type = zip(
...     *[haar_like_feature_coord(5, 5, feat_t)
...       for feat_t in ('type-2-x', 'type-3-x')])
>>> # only select one feature over two
>>> feature_coord = np.concatenate([x[::2] for x in feature_coord])
>>> feature_type = np.concatenate([x[::2] for x in feature_type])
>>> feature = haar_like_feature(img_ii, 0, 0, 5, 5,
...                             feature_type=feature_type,
...                             feature_coord=feature_coord)
>>> feature
array([ 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
        0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
        0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1, -3, -5, -2, -4, -1,
       -3, -5, -2, -4, -2, -4, -2, -4, -2, -1, -3, -2, -1, -1, -1, -1, -1])

References
----------
.. [1] https://en.wikipedia.org/wiki/Haar-like_feature
.. [2] Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., & Poggio, T.
       (1997, June). Pedestrian detection using wavelet templates.
       In Computer Vision and Pattern Recognition, 1997. Proceedings.,
       1997 IEEE Computer Society Conference on (pp. 193-199). IEEE.
       http://tinyurl.com/y6ulxfta
       :DOI:`10.1109/CVPR.1997.609319`
.. [3] Viola, Paul, and Michael J. Jones. "Robust real-time face
       detection." International journal of computer vision 57.2
       (2004): 137-154.
       https://www.merl.com/publications/docs/TR2004-043.pdf
       :DOI:`10.1109/CVPR.2001.990517`

c           
   3   F   >#    U  H  n[        TTTTTUT5      v   M     g 7fNr   ).0r   cfeature_coordr   	int_imagerr   s     r   	<genexpr>$haar_like_feature.<locals>.<genexpr>   s5      $ #0 .!1a  #0s   !r   z?Inconsistent size between feature coordinatesand feature types.)r   r   r   listr   from_iterableshaper   r   r   count_nonzeroflatnonzeror   r   copy)r)   r*   r'   r   r   r   r(   r   r   mask_featuremaskhaar_feature_idxhaar_features   ````` `      r   haar_like_featurer7   V   sR   Z .|<yy## $ $ #0	$ 	
 		
 q!\%7%7%::T  >JJ\6.\J), %(l$C	 %DLD##D)NN4(-!1ad@S %D	*
& >>*:;~~l3)5):):)<&% K	s   
E2!E
.E
c           
         [         R                  R                  U
5      n
[         R                  " U[         R                  S9n[         R                  " U[         R                  S9nU	c  UnOU
R                  XYSS9n[         R                  " U 5      n[        U R                  5      S:  a  [        U 5      n[        U5      nU H  n[        U5       H  u  pUu  nn[        [        [        UX/5      5      n[        [        [        UX/5      5      n[        UU5      u  nnUS-   S-  S:X  a  SU-
  UUU4   -  X-  -   nOSU-
  UUU4   -  X-  -   nUUUU4'   M     M     U$ )aC	  Visualization of Haar-like features.

Parameters
----------
image : (M, N) ndarray
    The region of an integral image for which the features need to be
    computed.
r : int
    Row-coordinate of top left corner of the detection window.
c : int
    Column-coordinate of top left corner of the detection window.
width : int
    Width of the detection window.
height : int
    Height of the detection window.
feature_coord : ndarray of list of tuples or None, optional
    The array of coordinates to be extracted. This is useful when you want
    to recompute only a subset of features. In this case `feature_type`
    needs to be an array containing the type of each feature, as returned
    by :func:`haar_like_feature_coord`. By default, all coordinates are
    computed.
color_positive_block : tuple of 3 floats
    Floats specifying the color for the positive block. Corresponding
    values define (R, G, B) values. Default value is red (1, 0, 0).
color_negative_block : tuple of 3 floats
    Floats specifying the color for the negative block Corresponding values
    define (R, G, B) values. Default value is blue (0, 1, 0).
alpha : float
    Value in the range [0, 1] that specifies opacity of visualization. 1 -
    fully transparent, 0 - opaque.
max_n_features : int, default=None
    The maximum number of features to be returned.
    By default, all features are returned.
rng : {`numpy.random.Generator`, int}, optional
    Pseudo-random number generator.
    By default, a PCG64 generator is used (see :func:`numpy.random.default_rng`).
    If `rng` is an int, it is used to seed the generator.

    The rng is used when generating a set of features smaller than
    the total number of available features.

Returns
-------
features : (M, N), ndarray
    An image in which the different features will be added.

Examples
--------
>>> import numpy as np
>>> from skimage.feature import haar_like_feature_coord
>>> from skimage.feature import draw_haar_like_feature
>>> feature_coord, _ = haar_like_feature_coord(2, 2, 'type-4')
>>> image = draw_haar_like_feature(np.zeros((2, 2)),
...                                0, 0, 2, 2,
...                                feature_coord,
...                                max_n_features=1)
>>> image
array([[[0. , 0.5, 0. ],
        [0.5, 0. , 0. ]],
<BLANKLINE>
       [[0.5, 0. , 0. ],
        [0. , 0.5, 0. ]]])

)dtypeF)sizereplace   r   r	   r   )r   randomdefault_rngasarrayfloat64choicer2   lenr/   r
   r   	enumeratetuplemapr   r   )imager*   r'   r   r   r(   color_positive_blockcolor_negative_blockalphamax_n_featuresrngfeature_coord_outputcoordidx_rectrectcoord_start	coord_endrrcc	new_values                        r   draw_haar_like_featurerV      sT   Z ))


$C::&:"**M::&:"**M&MPUVWWU^F
5;;!%&!F'.NH%)"KCqf =>Kc#y1&9:I{I6FBA"q(Y&R.85;WW	Y&R.85;WW	&F2r6N /   Mr   r%   )NN))      ?        rX   )rX   rW   rX   g      ?NN)	itertoolsr   operatorr   numpyr   _haarr   r   colorr
   drawr   utilr   r   r   r"   r7   rV    r   r   <module>ra      sR       2 ,   I$2<l FJRx )(
hr   