
    9i$                     t    S r SSKrSSKJr  SSKJr  SSKJ	r	  SSK
JrJr  SSKJr  S	 r     SS
SS.S jjrg)z
canny.py - Canny Edge detector

Reference: Canny, J., A Computational Approach To Edge Detection, IEEE Trans.
    Pattern Analysis and Machine Intelligence, 8:679-714, 1986
    N   )dtype_limits)gaussian)_supported_float_typecheck_nD   ) _nonmaximum_suppression_bilinearc                    [        X#USS9nUS:H  =(       d    USLn[        U R                  5      nUcx  U(       a  [        R                  " U R
                  US9nU n[        R                  " U R
                  [        S9n	SU	SS2SS24'   SU	SS2SS24'   SU	SS2SS24'   SU	SS2SS24'   O\UR                  [        SS	9n[        R                  " U 5      nX   X'   [        R                  " S
S
5      n
[        R                  " XSS9n	U(       a;  [        UR                  USS	940 UD6[        R                  " U5      R                  -   n[        U40 UD6nU(       a  UW-  nX4$ )aZ  Generate a smoothed image and an eroded mask.

The image is smoothed using a gaussian filter ignoring masked
pixels and the mask is eroded.

Parameters
----------
image : array
    Image to be smoothed.
mask : array
    Mask with 1's for significant pixels, 0's for masked pixels.
sigma : scalar or sequence of scalars
    Standard deviation for Gaussian kernel. The standard
    deviations of the Gaussian filter are given for each axis as a
    sequence, or as a single number, in which case it is equal for
    all axes.
mode : str, {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}
    The ``mode`` parameter determines how the array borders are
    handled, where ``cval`` is the value when mode is equal to
    'constant'.
cval : float, optional
    Value to fill past edges of input if `mode` is 'constant'.

Returns
-------
smoothed_image : ndarray
    The smoothed array
eroded_mask : ndarray
    The eroded mask.

Notes
-----
This function calculates the fractional contribution of masked pixels
by applying the function to the mask (which gets you the fraction of
the pixel data that's due to significant points). We then mask the image
and apply the function. The resulting values will be lower by the
bleed-over fraction, so you can recalibrate by dividing by the function
on the mask to recover the effect of smoothing from just the significant
pixels.
F)sigmamodecvalpreserve_rangeconstantN)dtyper   r   )copyr   )border_value)dictr   r   nponesshapeboolastype
zeros_likendigenerate_binary_structurebinary_erosionr   finfoeps)imagemaskr   r   r   gaussian_kwargscompute_bleedover
float_typemasked_imageeroded_masks
bleed_oversmoothed_images                V/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/skimage/feature/_canny.py_preprocessr+      se   R USO
*>d$.>&u{{3J|775;;j9Dggekk6BQBEBCFArrEArsF {{4e{,}}U+"[ ))!Q/((qA
 T[[%[8LOLhhz"&&' 	 l>o>N
 *$&&    r           )r   r   c                   [         R                  " U R                  [         R                  5      (       d4  [         R                  " U R                  [         R                  5      (       a  [        S5      e[        U S5        [        U SS9S   nUc  SnO&U(       a  SUs=::  a  S::  d  O  [        S	5      eOX(-  nUc  S
nO&U(       a  SUs=::  a  S::  d  O  [        S	5      eOX8-  nX2:  a  [        S5      e[        XXU5      u  p[        R                  " U	SS9n[        R                  " U	SS9nX-  nXU-  -  n[         R                  " XS9  U(       a!  [         R                  " USU-  SU-  /5      u  p#[        XXU5      nUS:  n[         R                  " S[        5      n[        R                   " UU5      u  nnUS:X  a  U$ XU:  -  n[         R"                  " UU   5      n[         R$                  " US-   4[        5      nSUU'   UU   nU$ )a  Edge filter an image using the Canny algorithm.

Parameters
----------
image : 2D array
    Grayscale input image to detect edges on; can be of any dtype.
sigma : float, optional
    Standard deviation of the Gaussian filter.
low_threshold : float, optional
    Lower bound for hysteresis thresholding (linking edges).
    If None, low_threshold is set to 10% of dtype's max.
high_threshold : float, optional
    Upper bound for hysteresis thresholding (linking edges).
    If None, high_threshold is set to 20% of dtype's max.
mask : array, dtype=bool, optional
    Mask to limit the application of Canny to a certain area.
use_quantiles : bool, optional
    If ``True`` then treat low_threshold and high_threshold as
    quantiles of the edge magnitude image, rather than absolute
    edge magnitude values. If ``True`` then the thresholds must be
    in the range [0, 1].
mode : str, {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}
    The ``mode`` parameter determines how the array borders are
    handled during Gaussian filtering, where ``cval`` is the value when
    mode is equal to 'constant'.
cval : float, optional
    Value to fill past edges of input if `mode` is 'constant'.

Returns
-------
output : 2D array (image)
    The binary edge map.

See also
--------
skimage.filters.sobel

Notes
-----
The steps of the algorithm are as follows:

* Smooth the image using a Gaussian with ``sigma`` width.

* Apply the horizontal and vertical Sobel operators to get the gradients
  within the image. The edge strength is the norm of the gradient.

* Thin potential edges to 1-pixel wide curves. First, find the normal
  to the edge at each point. This is done by looking at the
  signs and the relative magnitude of the X-Sobel and Y-Sobel
  to sort the points into 4 categories: horizontal, vertical,
  diagonal and antidiagonal. Then look in the normal and reverse
  directions to see if the values in either of those directions are
  greater than the point in question. Use interpolation to get a mix of
  points instead of picking the one that's the closest to the normal.

* Perform a hysteresis thresholding: first label all points above the
  high threshold as edges. Then recursively label any point above the
  low threshold that is 8-connected to a labeled point as an edge.

References
----------
.. [1] Canny, J., A Computational Approach To Edge Detection, IEEE Trans.
       Pattern Analysis and Machine Intelligence, 8:679-714, 1986
       :DOI:`10.1109/TPAMI.1986.4767851`
.. [2] William Green's Canny tutorial
       https://en.wikipedia.org/wiki/Canny_edge_detector

Examples
--------
>>> from skimage import feature
>>> rng = np.random.default_rng()
>>> # Generate noisy image of a square
>>> im = np.zeros((256, 256))
>>> im[64:-64, 64:-64] = 1
>>> im += 0.2 * rng.random(im.shape)
>>> # First trial with the Canny filter, with the default smoothing
>>> edges1 = feature.canny(im)
>>> # Increase the smoothing for better results
>>> edges2 = feature.canny(im, sigma=3)

z'64-bit integer images are not supportedr   F)clip_negativer   g?r-         ?z,Quantile thresholds must be between 0 and 1.g?z1low_threshold should be lower then high_threshold)axisr   )outg      Y@)   r3   T)r   
issubdtyper   int64uint64
ValueErrorr   r   r+   r   sobelsqrt
percentiler	   r   r   labeluniquezeros)r    r   low_thresholdhigh_thresholdr!   use_quantilesr   r   	dtype_maxsmoothedr&   jsobelisobel	magnitude
low_maskedlow_maskstrellabelscount	high_masknonzero_sums
good_labeloutput_masks                          r*   cannyrO   g   s   D 
}}U[["((++r}}U[["))/T/TBCCUAU%8;I	}++KLL , 	"	~,,KLL - 	#%LMM (U$GH YYxa(FYYxa(FI& IGGI%(*-u~/EF)
%
 2	J A~HGGFD!EIIh.MFEz.89I99VI./L519,-J#J|V$Kr,   )r0   NNNF)__doc__numpyr   scipy.ndimagendimager   
util.dtyper   _shared.filtersr   _shared.utilsr   r   	_canny_cyr	   r+   rO    r,   r*   <module>rY      sJ      % & ; 7S'p 	_ 
	_r,   