ó
    ¡9ia  ã                   óT   • S SK rSSKJr  S SKJrJr  S/r\" SS1S9S\S	.S
 j5       rg)é    Né   )Únnls)Ú_deprecate_positional_argsÚ_NoValuer   z1.18.0Úatol)ÚversionÚdeprecated_args)Úmaxiterr   c                óÐ  • [         R                  " U [         R                  SS9n [         R                  " U[         R                  S9n[        U R                  5      S:w  a  [        SU R                   35      eUR                  S:”  d#  UR                  S:X  a+  UR                  S   S:w  a  [        SUR                   35      eUR                  S:X  a#  UR                  S   S:X  a  UR                  5       nU R                  u  pEXAR                  S   :w  a"  [        S	S
U SUR                  S   4 3-   5      eU(       d  SU-  n[        XU5      u  pgnUS:X  a  [        S5      eXg4$ )añ  
Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``.

This problem, often called as NonNegative Least Squares, is a convex
optimization problem with convex constraints. It typically arises when
the ``x`` models quantities for which only nonnegative values are
attainable; weight of ingredients, component costs and so on.

Parameters
----------
A : (m, n) ndarray
    Coefficient array
b : (m,) ndarray, float
    Right-hand side vector.
maxiter: int, optional
    Maximum number of iterations, optional. Default value is ``3 * n``.
atol : float, optional
    .. deprecated:: 1.18.0
        This parameter is deprecated and will be removed in SciPy 1.18.0.
        It is not used in the implementation.

Returns
-------
x : ndarray
    Solution vector.
rnorm : float
    The 2-norm of the residual, ``|| Ax-b ||_2``.

See Also
--------
lsq_linear : Linear least squares with bounds on the variables

Notes
-----
The code is based on the classical algorithm of [1]_. It utilizes an active
set method and solves the KKK (Karush-Kuhn-Tucker) conditions for the
non-negative least squares problem.

References
----------
.. [1] : Lawson C., Hanson R.J., "Solving Least Squares Problems", SIAM,
   1995, :doi:`10.1137/1.9781611971217`

 Examples
--------
>>> import numpy as np
>>> from scipy.optimize import nnls
...
>>> A = np.array([[1, 0], [1, 0], [0, 1]])
>>> b = np.array([2, 1, 1])
>>> nnls(A, b)
(array([1.5, 1. ]), 0.7071067811865475)

>>> b = np.array([-1, -1, -1])
>>> nnls(A, b)
(array([0., 0.]), 1.7320508075688772)

ÚC)ÚdtypeÚorder)r   é   z+Expected a 2D array, but the shape of A is r   zDExpected a 1D array,(or 2D with one column), but the, shape of b is r   z0Incompatible dimensions. The first dimension of zA is z, while the shape of b is é   z%Maximum number of iterations reached.)
ÚnpÚasarray_chkfiniteÚfloat64ÚlenÚshapeÚ
ValueErrorÚndimÚravelÚ_nnlsÚRuntimeError)	ÚAÚbr
   r   ÚmÚnÚxÚrnormÚinfos	            ÚT/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/scipy/optimize/_nnls.pyr   r   	   sE  € ô| 	×Ò˜Q¤b§j¡j¸Ñ<€AÜ
×Ò˜Q¤b§j¡jÑ1€Aä
ˆ17‰7ƒ|qÓÜÐFÀqÇwÁwÀiÐPÓQÐQà	‰‹
˜Ÿ™ 1›¨1¯7©7°1©:¸«?Üð +Ø+,¯7©7¨)ð5ó 6ð 	6à
&‰&A‹+˜AŸG™G A™J¨!›OØG‰G‹Iˆà7‰7D€AàG‰GA‰JƒÜØBØ˜sÐ4°a·g±g¸a±j°^Ð4DÐEñFóGð 	Gö ØA‘#ˆÜ˜1 Ó)N€AˆdØˆqƒyÜÐBÓCÐCàˆ8€Oó    )	Únumpyr   Ú	_slsqplibr   r   Úscipy._lib.deprecationr   r   Ú__all__© r#   r"   Ú<module>r)      s>   ðÛ Ý $ß Gð ˆ(€ñ  HØ-3¨Hñ6à Xô Uó6ñUr#   