
    9i                         S SK r S SKJrJrJr  SSKJrJr   S SKr\R                  " \R                  " S5      S\\S9r\4S jrS	 rS
 rSS jrg! \ a    SrSr Nf = f)    N)array
frombufferload   )registryregistry_urlsz
scipy-datazhttps://github.com/scipy/)pathbase_urlr   urlsc                     Uc  [        S5      e[        R                  " SS[        R                  S   R
                   30S9nUR                  XS9$ )NzsMissing optional dependency 'pooch' required for scipy.datasets module. Please use pip or conda to install 'pooch'.z
User-AgentzSciPy scipy)headers)
downloader)ImportErrorpoochHTTPDownloadersysmodules__version__fetch)dataset_namedata_fetcherr   s      X/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/scipy/datasets/_fetchers.py
fetch_datar      sa     6 7 	7 %%G(<(H(H'IJKJ lBB    c                      SSK n [        S5      n[        US5       n[        U R	                  U5      5      nSSS5        U$ ! , (       d  f       W$ = f)a  
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy
use in demos.

The image is derived from
https://pixnio.com/people/accent-to-the-top

Parameters
----------
None

Returns
-------
ascent : ndarray
   convenient image to use for testing and demonstration

Examples
--------
>>> import scipy.datasets
>>> ascent = scipy.datasets.ascent()
>>> ascent.shape
(512, 512)
>>> ascent.max()
np.uint8(255)

>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(ascent)
>>> plt.show()

r   Nz
ascent.datrb)pickler   openr   r   )r   fnamefascents       r   r"   r"   (   sJ    @ 
 |$E	eT	av{{1~& 
M 
	Ms   A
Ac                      [        S5      n [        U 5       nUS   R                  [        5      nSSS5        WS-
  S-  nU$ ! , (       d  f       N= f)ad  
Load an electrocardiogram as an example for a 1-D signal.

The returned signal is a 5 minute long electrocardiogram (ECG), a medical
recording of the heart's electrical activity, sampled at 360 Hz.

Returns
-------
ecg : ndarray
    The electrocardiogram in millivolt (mV) sampled at 360 Hz.

Notes
-----
The provided signal is an excerpt (19:35 to 24:35) from the `record 208`_
(lead MLII) provided by the MIT-BIH Arrhythmia Database [1]_ on
PhysioNet [2]_. The excerpt includes noise induced artifacts, typical
heartbeats as well as pathological changes.

.. _record 208: https://physionet.org/physiobank/database/html/mitdbdir/records.htm#208

.. versionadded:: 1.1.0

References
----------
.. [1] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database.
       IEEE Eng in Med and Biol 20(3):45-50 (May-June 2001).
       (PMID: 11446209); :doi:`10.13026/C2F305`
.. [2] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh,
       Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank,
       PhysioToolkit, and PhysioNet: Components of a New Research Resource
       for Complex Physiologic Signals. Circulation 101(23):e215-e220;
       :doi:`10.1161/01.CIR.101.23.e215`

Examples
--------
>>> from scipy.datasets import electrocardiogram
>>> ecg = electrocardiogram()
>>> ecg
array([-0.245, -0.215, -0.185, ..., -0.405, -0.395, -0.385], shape=(108000,))
>>> ecg.shape, ecg.mean(), ecg.std()
((108000,), -0.16510875, 0.5992473991177294)

As stated the signal features several areas with a different morphology.
E.g., the first few seconds show the electrical activity of a heart in
normal sinus rhythm as seen below.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> fs = 360
>>> time = np.arange(ecg.size) / fs
>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(9, 10.2)
>>> plt.ylim(-1, 1.5)
>>> plt.show()

After second 16, however, the first premature ventricular contractions,
also called extrasystoles, appear. These have a different morphology
compared to typical heartbeats. The difference can easily be observed
in the following plot.

>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(46.5, 50)
>>> plt.ylim(-2, 1.5)
>>> plt.show()

At several points large artifacts disturb the recording, e.g.:

>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(207, 215)
>>> plt.ylim(-2, 3.5)
>>> plt.show()

Finally, examining the power spectrum reveals that most of the biosignal is
made up of lower frequencies. At 60 Hz the noise induced by the mains
electricity can be clearly observed.

>>> from scipy.signal import welch
>>> f, Pxx = welch(ecg, fs=fs, nperseg=2048, scaling="spectrum")
>>> plt.semilogy(f, Pxx)
>>> plt.xlabel("Frequency in Hz")
>>> plt.ylabel("Power spectrum of the ECG in mV**2")
>>> plt.xlim(f[[0, -1]])
>>> plt.show()
zecg.datecgN   g      i@)r   r   astypeint)r    filer$   s      r   electrocardiogramr)   T   sN    v y!E	e5k  % 
 :
CJ	 
s   A
Ac                 Z   SSK n[        S5      n[        US5       nUR                  5       nSSS5        UR	                  W5      n[        USS9nSUl        U SL a>  S	USS2SS2S4   -  S
USS2SS2S4   -  -   SUSS2SS2S4   -  -   R                  S5      nU$ ! , (       d  f       Nu= f)a"  
Get a 1024 x 768, color image of a raccoon face.

The image is derived from
https://pixnio.com/fauna-animals/raccoons/raccoon-procyon-lotor

Parameters
----------
gray : bool, optional
    If True return 8-bit grey-scale image, otherwise return a color image

Returns
-------
face : ndarray
    image of a raccoon face

Examples
--------
>>> import scipy.datasets
>>> face = scipy.datasets.face()
>>> face.shape
(768, 1024, 3)
>>> face.max()
np.uint8(255)

>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(face)
>>> plt.show()

r   Nzface.datr   uint8)dtype)i   r%      TgzG?gQ?r   gQ?   )bz2r   r   read
decompressr   shaper&   )grayr/   r    r!   rawdata	face_datafaces          r   r6   r6      s    @ z"E	eT	a&&( 
w'Iiw/DDJt|tAq!G}$td1a7m';;tAq!G}$%&,fWo 	K 
	s   B
B*)F)r   numpyr   r   r   	_registryr   r   r   createos_cacher   r   r   r"   r)   r6    r   r   <module>r<      s{    
 ) ) .
 << ^^L)
 -L +7 
C)X`F*_  ELs   A 
AA