# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch XLM-RoBERTa model."""

import math

import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel

from modelscope.metainfo import Models
from modelscope.models import Model, TorchModel
from modelscope.models.builder import MODELS
from modelscope.outputs import AttentionBackboneModelOutput
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
from modelscope.utils.nlp.utils import parse_labels_in_order
from modelscope.utils.torch_utils import (apply_chunking_to_forward,
                                          find_pruneable_heads_and_indices,
                                          prune_linear_layer)
from .configuration import XLMRobertaConfig

logger = get_logger()

_CONFIG_FOR_DOC = 'XLMRobertaConfig'


# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids,
                                       padding_idx,
                                       past_key_values_length=0):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: torch.Tensor x:

    Returns: torch.Tensor
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)
                           + past_key_values_length) * mask
    return incremental_indices.long() + padding_idx


# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->XLMRoberta
class XLMRobertaEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size,
            config.hidden_size,
            padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings,
                                                config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
                                                  config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(config,
                                               'position_embedding_type',
                                               'absolute')
        self.register_buffer(
            'position_ids',
            torch.arange(config.max_position_embeddings).expand((1, -1)))
        self.register_buffer(
            'token_type_ids',
            torch.zeros(self.position_ids.size(), dtype=torch.long),
            persistent=False)

        # End copy
        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings,
            config.hidden_size,
            padding_idx=self.padding_idx)

    def forward(self,
                input_ids=None,
                token_type_ids=None,
                position_ids=None,
                inputs_embeds=None,
                past_key_values_length=0):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(
                    input_ids, self.padding_idx, past_key_values_length)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(
                    inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without
        # passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, 'token_type_ids'):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
                    input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(
                    input_shape,
                    dtype=torch.long,
                    device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == 'absolute':
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: torch.Tensor

        Returns: torch.Tensor
        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1,
            sequence_length + self.padding_idx + 1,
            dtype=torch.long,
            device=inputs_embeds.device)
        return position_ids.unsqueeze(0).expand(input_shape)


# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->XLMRoberta
class XLMRobertaSelfAttention(nn.Module):

    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
                config, 'embedding_size'):
            raise ValueError(
                f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention '
                f'heads ({config.num_attention_heads})')

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size
                                       / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.position_embedding_type = position_embedding_type or getattr(
            config, 'position_embedding_type', 'absolute')
        if self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query':
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(
                2 * config.max_position_embeddings - 1,
                self.attention_head_size)

        self.is_decoder = config.is_decoder

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads,
                                       self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(
                self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(
                self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        use_cache = past_key_value is not None
        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer,
                                        key_layer.transpose(-1, -2))

        if self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query':
            query_length, key_length = query_layer.shape[2], key_layer.shape[2]
            if use_cache:
                position_ids_l = torch.tensor(
                    key_length - 1,
                    dtype=torch.long,
                    device=hidden_states.device).view(-1, 1)
            else:
                position_ids_l = torch.arange(
                    query_length,
                    dtype=torch.long,
                    device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(
                key_length, dtype=torch.long,
                device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r

            positional_embedding = self.distance_embedding(
                distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(
                dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == 'relative_key':
                relative_position_scores = torch.einsum(
                    'bhld,lrd->bhlr', query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == 'relative_key_query':
                relative_position_scores_query = torch.einsum(
                    'bhld,lrd->bhlr', query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum(
                    'bhrd,lrd->bhlr', key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

        attention_scores = attention_scores / math.sqrt(
            self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (
            self.all_head_size, )
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (context_layer,
                   attention_probs) if output_attentions else (context_layer, )

        if self.is_decoder:
            outputs = outputs + (past_key_value, )
        return outputs


# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput
class XLMRobertaSelfOutput(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor,
                input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->XLMRoberta
class XLMRobertaAttention(nn.Module):

    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        self.self = XLMRobertaSelfAttention(
            config, position_embedding_type=position_embedding_type)
        self.output = XLMRobertaSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads,
            self.self.attention_head_size, self.pruned_heads)

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(
            heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            past_key_value,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,
                   ) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate
class XLMRobertaIntermediate(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.roberta.modeling_roberta.RobertaOutput
class XLMRobertaOutput(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor,
                input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->XLMRoberta
class XLMRobertaLayer(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = XLMRobertaAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise ValueError(
                    f'{self} should be used as a decoder model if cross attention is added'
                )
            self.crossattention = XLMRobertaAttention(
                config, position_embedding_type='absolute')
        self.intermediate = XLMRobertaIntermediate(config)
        self.output = XLMRobertaOutput(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:
                                                  2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[
                1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, 'crossattention'):
                raise ValueError(
                    f'If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers'
                    ' by setting `config.add_cross_attention=True`')

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[
                -2:] if past_key_value is not None else None
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[
                1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        layer_output = apply_chunking_to_forward(self.feed_forward_chunk,
                                                 self.chunk_size_feed_forward,
                                                 self.seq_len_dim,
                                                 attention_output)
        outputs = (layer_output, ) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value, )

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->XLMRoberta
class XLMRobertaEncoder(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [XLMRobertaLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = (
        ) if output_attentions and self.config.add_cross_attention else None

        next_decoder_cache = () if use_cache else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[
                i] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
                    )
                    use_cache = False

                def create_custom_forward(module):

                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value,
                                      output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1], )
            if output_attentions:
                all_self_attentions = all_self_attentions + (
                    layer_outputs[1], )
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (
                        layer_outputs[2], )

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        if not return_dict:
            return tuple(v for v in [
                hidden_states,
                next_decoder_cache,
                all_hidden_states,
                all_self_attentions,
                all_cross_attentions,
            ] if v is not None)
        return AttentionBackboneModelOutput(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler
class XLMRobertaPooler(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->XLMRoberta
class XLMRobertaPreTrainedModel(TorchModel, PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = XLMRobertaConfig
    base_model_prefix = 'roberta'
    supports_gradient_checkpointing = True
    _no_split_modules = []

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(
                mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(
                mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, XLMRobertaEncoder):
            module.gradient_checkpointing = value

    def update_keys_to_ignore(self, config, del_keys_to_ignore):
        """Remove some keys from ignore list"""
        if not config.tie_word_embeddings:
            # must make a new list, or the class variable gets modified!
            self._keys_to_ignore_on_save = [
                k for k in self._keys_to_ignore_on_save
                if k not in del_keys_to_ignore
            ]
            self._keys_to_ignore_on_load_missing = [
                k for k in self._keys_to_ignore_on_load_missing
                if k not in del_keys_to_ignore
            ]

    @classmethod
    def _instantiate(cls, **kwargs):
        """Instantiate the model.

        Args:
            kwargs: Input args.
                    model_dir: The model dir used to load the checkpoint and the label information.
                    num_labels: An optional arg to tell the model how many classes to initialize.
                                    Method will call utils.parse_label_mapping if num_labels not supplied.
                                    If num_labels is not found, the model will use the default setting (2 classes).

        Returns:
            The loaded model, which is initialized by transformers.PreTrainedModel.from_pretrained
        """

        model_dir = kwargs.pop('model_dir', None)
        cfg = kwargs.pop('cfg', None)
        model_args = parse_labels_in_order(model_dir, cfg, **kwargs)
        if model_dir is None:
            config = XLMRobertaConfig(**model_args)
            model = cls(config)
        else:
            model = super(Model, cls).from_pretrained(
                pretrained_model_name_or_path=model_dir, **model_args)
        model.model_dir = model_dir
        return model


@MODELS.register_module(
    group_key=Tasks.backbone, module_name=Models.xlm_roberta)
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaModel(XLMRobertaPreTrainedModel):
    """

    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in *Attention is
    all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
    Kaiser and Illia Polosukhin.

    To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
    to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
    `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.

    .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762

    """

    _keys_to_ignore_on_load_missing = [r'position_ids']

    # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->XLMRoberta
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = XLMRobertaEmbeddings(config)
        self.encoder = XLMRobertaEncoder(config)

        self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    # Copied from transformers.models.bert.modeling_bert.BertModel.forward
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
        input_ids (`torch.LongTensor` of shape `((batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`BertTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
            for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `((batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask
            values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `((batch_size, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the
            inputs. Indices are selected in `[0, 1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `((batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position
            embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers,
        num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask
            values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `((batch_size, sequence_length, hidden_size)`,
        *optional*):
            Optionally, instead of passing `input_ids` you can choose to
            directly pass an embedded representation. This is useful if you want
            more control over how to convert `input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention
            layers. See `attentions` under returned tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See
            `hidden_states` under returned tensors for more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a
            plain tuple.
        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors
            of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else
            self.config.output_hidden_states)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                'You cannot specify both input_ids and inputs_embeds at the same time'
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError(
                'You have to specify either input_ids or inputs_embeds')

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[
            2] if past_key_values is not None else 0

        if attention_mask is None:
            attention_mask = torch.ones(
                ((batch_size, seq_length + past_key_values_length)),
                device=device)

        if token_type_ids is None:
            if hasattr(self.embeddings, 'token_type_ids'):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :
                                                                         seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
                    batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(
                    input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
            attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size(
            )
            encoder_hidden_shape = (encoder_batch_size,
                                    encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(
                    encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(
                encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask,
                                       self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(
            sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return AttentionBackboneModelOutput(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )
