
    9i                     ~    S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
" 5       r " S S\5      r " S	 S
\5      rg)zXLM-RoBERTa configuration    )OrderedDict)Mapping)PretrainedConfig)
OnnxConfig)
get_loggerc                   X   ^  \ rS rSrSrSr                  SU 4S jjrSrU =r$ )XLMRobertaConfig   a:  
This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It
is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa
[xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by
        the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or
        [`TFXLMRobertaModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
        positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
        [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
        For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
        with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
    is_decoder (`bool`, *optional*, defaults to `False`):
        Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    classifier_dropout (`float`, *optional*):
        The dropout ratio for the classification head.

Examples:

```python
>>> from transformers import XLMRobertaConfig, XLMRobertaModel

>>> # Initializing a XLM-RoBERTa xlm-roberta-base style configuration
>>> configuration = XLMRobertaConfig()

>>> # Initializing a model (with random weights) from the xlm-roberta-base style configuration
>>> model = XLMRobertaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```zxlm-robertac                    > [         TU ]  " SUUUS.UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        UU l        UU l        UU l        g )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropout)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    kwargs	__class__s                       o/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/modelscope/models/nlp/xlm_roberta/configuration.pyr   XLMRobertaConfig.__init__a   s    ( 	 	%%%	 		 %&!2#6 $!2#6 ,H)'>$.!2,'>$""4    )r   r    r   r   r   r   r   r   r   r   r   r   r   r   r   )i:w  i      r'   i   gelu皙?r)   i      g{Gz?g-q=   r   r*   absoluteTN)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r#   s   @r$   r	   r	      sS    AD J " #%%'#'"%(.1),!"#' %)3$(%(5 (5r&   r	   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)XLMRobertaOnnxConfig   returnc                 \    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4/5      $ )	Nzmultiple-choicebatchchoicesequence)r   r+   r*   )r   r+   	input_idsattention_mask)taskr   )r!   dynamic_axiss     r$   inputsXLMRobertaOnnxConfig.inputs   sG    99))&8
CL&:6L,'|,
  	r&   r   N)
r-   r.   r/   r0   propertyr   strintrA   r3   r   r&   r$   r6   r6      s.    WS#X%6 67  r&   r6   N)r1   collectionsr   typingr    transformers.configuration_utilsr   transformers.onnxr   modelscope.utils.loggerr   loggerr	   r6   r   r&   r$   <module>rL      s<     ! #  = ( .	m5' m5b: r&   