
    9i                     h    S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
" 5       r " S S\5      rg	)
z!MEGATRON_BERT model configuration    )OrderedDict)Mapping)PretrainedConfig)
OnnxConfig)
get_loggerc                   R   ^  \ rS rSrSrSr               SU 4S jjrSrU =r$ )MegatronBertConfig   a  
This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a
MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT
[nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 29056):
        Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented
        by the `inputs_ids` passed when calling [`MegatronBertModel`].
    hidden_size (`int`, *optional*, defaults to 1024):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 4096):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`MegatronBertModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
        positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
        [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
        For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
        with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.

Examples:

>>> from transformers import MegatronBertConfig, MegatronBertModel

>>> # Initializing a MEGATRON_BERT bert-base-uncased style configuration
>>> configuration = MegatronBertConfig()

>>> # Initializing a model (with random weights) from the bert-base-uncased style configuration
>>> model = MegatronBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
zmegatron-bertc                    > [         TU ]  " SSU0UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        g )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cache)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                    q/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/modelscope/models/nlp/megatron_bert/configuration.pyr   MegatronBertConfig.__init__]   sk    " 	=l=f=$&!2#6 $!2#6 ,H)'>$.!2,'>$"    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   )iq  i         i   gelu皙?r'   i      g{Gz?g-q=r   absoluteT)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r    s   @r!   r	   r	      sI    <z !J "!#%%'#'"%(.1),!"#' %)3 #  #r#   r	   N)r.   collectionsr   typingr    transformers.configuration_utilsr   transformers.onnxr   modelscope.utils.loggerr   loggerr	   r   r#   r!   <module>r8      s/     ) #  = ( .	`#) `#r#   