
    9i                     ~    S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
" 5       r " S S\5      r " S	 S
\5      rg)zBERT model configuration     OrderedDict)Mapping)PretrainedConfig)
OnnxConfig)
get_loggerc                   T   ^  \ rS rSrSrSr                SU 4S jjrSrU =r$ )
BertConfig   a  
This is the configuration class to store the configuration of a
[`BertModel`] or a [`TFBertModel`]. It is used to instantiate a BERT model
according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar
configuration to that of the BERT
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to
control the model outputs. Read the documentation from [`PretrainedConfig`]
for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the BERT model. Defines the number of different
        tokens that can be represented by the `inputs_ids` passed when
        calling [`BertModel`] or [`TFBertModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the
        Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (often named feed-forward)
        layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the
        encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and
        `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the
        embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with.
        Typically set this to something large just in case (e.g., 512 or
        1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling
        [`BertModel`] or [`TFBertModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for
        initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`,
        `"relative_key"`, `"relative_key_query"`. For positional embeddings
        use `"absolute"`. For more information on `"relative_key"`, please
        refer to [Self-Attention with Relative Position Representations
        (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more
        information on `"relative_key_query"`, please refer to *Method 4* in
        [Improve Transformer Models with Better Relative Position Embeddings
        (Huang et al.)](https://arxiv.org/abs/2009.13658).
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values
        attentions (not used by all models). Only relevant if
        `config.is_decoder=True`.
    classifier_dropout (`float`, *optional*):
        The dropout ratio for the classification head.

Examples:

>>> from transformers import BertModel, BertConfig

>>> # Initializing a BERT bert-base-uncased style configuration
>>> configuration = BertConfig()

>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = BertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
bertc                    > [         TU ]  " SSU0UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        UU l        g )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropout)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    kwargs	__class__s                     h/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/modelscope/models/nlp/bert/configuration.pyr   BertConfig.__init__m   ss    $ 	=l=f=$&!2#6 $!2#6 ,H)'>$.!2,'>$""4    )r   r    r   r   r   r   r   r   r   r   r   r   r   r   r   )i:w  i      r'   i   gelu皙?r)   i      g{Gz?g-q=r   absoluteTN)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r#   s   @r$   r
   r
      sM    M\ J " #%%'#'"%(.1),!"#' %)3$(!"5 "5r&   r
   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)BertOnnxConfig   returnc                 <    [        SSSS.4SSSS.4SSSS.4/5      $ )N	input_idsbatchsequence)r      attention_masktoken_type_idsr   )r!   s    r$   inputsBertOnnxConfig.inputs   sQ           
  	r&   r   N)
r,   r-   r.   r/   propertyr   strintr?   r2   r   r&   r$   r5   r5      s.    WS#X%6 67  r&   r5   N)r0   collectionsr   typingr    transformers.configuration_utilsr   transformers.onnxr   modelscope.utils.loggerr   loggerr
   r5   r   r&   r$   <module>rJ      s<     ! #  = ( .	s5! s5lZ r&   