
    9iH                     2    S SK r S SKJr  Sr " S S\5      rg)    N)XLMRobertaTokenizeru   ▁c                        \ rS rSrSrSS/rSrg)VLDocXLMTokenizer
   aT  
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).

This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.

Args:
    vocab_file (`str`):
        Path to the vocabulary file.
    bos_token (`str`, *optional*, defaults to `"<s>"`):
        The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

        <Tip>

        When building a sequence using special tokens, this is not the token that is used for the beginning of
        sequence. The token used is the `cls_token`.

        </Tip>

    eos_token (`str`, *optional*, defaults to `"</s>"`):
        The end of sequence token.

        <Tip>

        When building a sequence using special tokens, this is not the token that is used for the end of sequence.
        The token used is the `sep_token`.

        </Tip>

    sep_token (`str`, *optional*, defaults to `"</s>"`):
        The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
        sequence classification or for a text and a question for question answering. It is also used as the last
        token of a sequence built with special tokens.
    cls_token (`str`, *optional*, defaults to `"<s>"`):
        The classifier token which is used when doing sequence classification (classification of the whole sequence
        instead of per-token classification). It is the first token of the sequence when built with special tokens.
    unk_token (`str`, *optional*, defaults to `"<unk>"`):
        The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
        token instead.
    pad_token (`str`, *optional*, defaults to `"<pad>"`):
        The token used for padding, for example when batching sequences of different lengths.
    mask_token (`str`, *optional*, defaults to `"<mask>"`):
        The token used for masking values. This is the token used when training this model with masked language
        modeling. This is the token which the model will try to predict.
    cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
        The bounding box to use for the special [CLS] token.
    sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
        The bounding box to use for the special [SEP] token.
    pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
        The bounding box to use for the special [PAD] token.
    pad_token_label (`int`, *optional*, defaults to -100):
        The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
        CrossEntropyLoss.
    only_label_first_subword (`bool`, *optional*, defaults to `True`):
        Whether or not to only label the first subword, in case word labels are provided.
    additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
        Additional special tokens used by the tokenizer.
    sp_model_kwargs (`dict`, *optional*):
        Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
        SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
        to set:

        - `enable_sampling`: Enable subword regularization.
        - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.

          - `nbest_size = {0,1}`: No sampling is performed.
          - `nbest_size > 1`: samples from the nbest_size results.
          - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
            using forward-filtering-and-backward-sampling algorithm.

        - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
          BPE-dropout.

Attributes:
    sp_model (`SentencePieceProcessor`):
        The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
	input_idsattention_mask N)__name__
__module____qualname____firstlineno____doc__model_input_names__static_attributes__r	       p/var/www/html/land-doc-ocr/venv/lib/python3.13/site-packages/modelscope/models/multi_modal/vldoc/tokenization.pyr   r   
   s    M\ %&67r   r   )ostransformersr   SPIECE_UNDERLINEr   r	   r   r   <module>r      s"    
 , O8+ O8r   