# https://github.com/eladrich/pixel2style2pixel

from collections import namedtuple

import torch
from torch.nn import (AdaptiveAvgPool2d, BatchNorm2d, Conv2d, MaxPool2d,
                      Module, PReLU, ReLU, Sequential, Sigmoid)


class Flatten(Module):

    def forward(self, input):
        return input.view(input.size(0), -1)


def l2_norm(input, axis=1):
    norm = torch.norm(input, 2, axis, True)
    output = torch.div(input, norm)
    return output


class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
    pass


def get_block(in_channel, depth, num_units, stride=2):
    return [Bottleneck(in_channel, depth, stride)
            ] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]


def get_blocks(num_layers):
    if num_layers == 50:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=4),
            get_block(in_channel=128, depth=256, num_units=14),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    elif num_layers == 100:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=13),
            get_block(in_channel=128, depth=256, num_units=30),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    elif num_layers == 152:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=8),
            get_block(in_channel=128, depth=256, num_units=36),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    else:
        raise ValueError(
            'Invalid number of layers: {}. Must be one of [50, 100, 152]'.
            format(num_layers))
    return blocks


class SEModule(Module):

    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = AdaptiveAvgPool2d(1)
        self.fc1 = Conv2d(
            channels,
            channels // reduction,
            kernel_size=1,
            padding=0,
            bias=False)
        self.relu = ReLU(inplace=True)
        self.fc2 = Conv2d(
            channels // reduction,
            channels,
            kernel_size=1,
            padding=0,
            bias=False)
        self.sigmoid = Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x


class bottleneck_IR(Module):

    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
            PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
            BatchNorm2d(depth))

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut


class bottleneck_IR_SE(Module):

    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR_SE, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
            PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
            BatchNorm2d(depth), SEModule(depth, 16))

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut
