# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.nn as nn


class AFF(nn.Module):

    def __init__(self, channels=64, r=4):
        super(AFF, self).__init__()
        inter_channels = int(channels // r)

        self.local_att = nn.Sequential(
            nn.Conv2d(
                channels * 2,
                inter_channels,
                kernel_size=1,
                stride=1,
                padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.SiLU(inplace=True),
            nn.Conv2d(
                inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

    def forward(self, x, ds_y):
        xa = torch.cat((x, ds_y), dim=1)
        x_att = self.local_att(xa)
        x_att = 1.0 + torch.tanh(x_att)
        xo = torch.mul(x, x_att) + torch.mul(ds_y, 2.0 - x_att)

        return xo
